via
marina_pс некоторым запозданием - так что наверно, большинство интересующихся уже видели -
крайне интересное интервью Ю.И.Манина, взятое Михаилом Гельфандом (биологом, внуком И.М. Гельфанда, как мне тут указал
xgrbml). (pdf). Очень, очень интересное.
Пара цитат:
"Очень условно говоря, во времена Ньютона, Эйлера, Лагранжа, Гаусса взаимодействие было настолько тесное, что одни и те же люди занимались математикой и физикой. Они могли себя считать больше математиками или больше физиками, но это были одни и те же люди. Это продолжалось где-то до конца XIX века. ХХ век начал обнаруживать существенную разницу. Поразительный пример – это история общей теории относительности. Эйнштейн не просто не знал математики, он не знал даже, что уже существует именно та математика, которая была нужна ему, когда в 1907 году он начал понимать физику общей теории относительности на своем гениально интуитивном языке. После нескольких лет, посвященных квантам, он вернулся к гравитации и в 1912 году написал своему другу, математику Марселю Гроссману: «Ты должен помочь мне, а не то я с ума сойду!». Их первая статья называлась так: «Набросок общей теории относительности и теории гравитации. I. Физическая часть Альберта Эйнштейна. II. Математическая часть Марселя Гроссмана». Эта попытка была все еще полуудача: найден правильный язык, но не правильные уравнения. К 1915 году уравнения были найдены, затем Гильберт выводит их из своего принципа действия – важность этой задачи, кажется, тоже ускользала от Эйнштейна… Увлекательная игра и сотрудничество великих интеллектов, вовлекшая историков в дурные споры о приоритете: сами главные герои были благородны и щедры на признание заслуг друг друга. "
[…]
"За это время кроме отдельных умов – фон Нойман несомненно был и физиком, и математиком, другого человека такого масштаба в ХХ веке я не знаю – в первой трети века математика и физика развивались параллельно и через некоторое время перестали обращать друг на друга внимание. В 40-х годах Фейнман написал свой замечательный континуальный интеграл как новое средство квантования, проработав его потрясающе математически, – вообразите себе что-то вроде Эйфелевой башни, которая висит в воздухе, без фундамента с точки зрения математики. Вот она вся есть, она вся работает, а стоит она неизвестно на чем. Это продолжается и по сей день. И когда в 50-е годы появились связности в расслоении и оказалось, что интеграл действия, из которого выводится уравнение для ядерных сил, грубо говоря, является давно известным из дифференциальной геометрии уравнением Янга-Миллса, тут математики начали коситься на физиков, а физики начали коситься на математиков. И оказалось парадоксальным и чрезвычайно для меня приятным образом, что мы стали учиться у физиков в большей степени, чем они у нас. Оказалось, что они с помощью квантовой теории поля и аппарата интеграла Фейнмана наработали мыслительные орудия, которые стали им позволять открывать один математический факт за другим. Не доказательства, а открытия. А дальше математики сидят, чешут голову и какие-то из этих открытий формулируют в виде теорем и пытаются их доказать нашими честными средствами. Это показывает, что то, что делают физики, действительно математически осмысленно – и физики говорят: «Мы всегда это знали, но, конечно, спасибо за внимание». Но вообще в результате мы научились у физиков, что надо спрашивать и какие предполагаются ответы – как правило, они оказываются правильными. Потом появляется Виттен, уникальное существо, человек-машина для производства великолепной математики из этой самой башни Эйфеля, висящей в воздухе. Я смотрел в Википедии: он кончал что-то неправдоподобное, то ли факультет журналистики, то ли юриспруденции, то ли еще что-то такое, потом занимался какой-то чепухой, а потом вдруг стал гениальным физиком. Причем таким физиком, что физики, связанные с экспериментом, жутко на него фырчат, косятся и прочее: не предсказал никакого спектра масс; все его предсказания относятся к моменту Большого взрыва, когда неизвестно, что было, и ничего измерить нельзя; все его универсальные законы работают в одиннадцатимерном пространстве; невероятное количество неизвестных параметров; и вообще – это не физика. Я в каком-то смысле даже и согласен. Это хозяин такого потрясающего ментального орудия, которое производит математику невероятной силы и мощи, но исходя из физической интуиции. Причем исходным материалом этой интуиции является не физический мир, а орудие, созданное Фейнманом, и разные его варианты и вариации – орудие вполне математическое, но не имеющее абсолютно никакого математического обоснования. Такой потрясающий эвристический принцип, но не мелочишка какая-то, а, я же говорю, огромное строение, только без фундамента. "
Ну и дальше...